$$GES_i = \sum_{j=1}^{n} \left[N_j \times V_j \times \left(\frac{T_{CR}}{T_D \times P_{CR}} \right) \left(P_{d1} - P_{d2} \right) \right] \times FM_i \times \rho_i \times 0,001$$

Où:

 GES_i = Émissions annuelles de gaz à effet de serre i attribuables au gaz naturel émis à l'atmosphère par les évents de décharge des équipements, en tonnes métriques;

n = Nombre total de types d'équipements;

j = Type d'équipement dont le volume de gaz naturel dans les chambres de décharge, entre les vannes d'isolement, est le même:

N_i = Nombre annuel de décharges effectuées par type d'équipement j, déterminé conformément au paragraphe 2 de QC.33.4.7;

 V_j = Volume total des chambres de décharge, entre les vannes d'isolement, par type d'équipement j, déterminé conformément au paragraphe 1 de QC.33.4.7, en mètres cubes;

T_{CR} = Température de référence, soit 293,15 kelvins;

 T_D = Température aux conditions de décharge, en kelvins;

P_{CR} = Pression de référence, soit 101,325 kPa;

P_{d1} = Pression absolue avant la décharge, en kilopascals;

 P_{d2} = Pression absolue après la décharge ou une valeur de 0 si le gaz de purge utilisé n'est pas du CO_2 ou du CH_4 , en kilopascals;

FM_i = Fraction molaire du gaz à effet de serre i dans le gaz naturel, déterminée conformément au paragraphe 3 de QC.33.4;

 ρ_i = Densité du gaz à effet de serre i, soit 1,893 kg par mètre cube pour le CO_2 et 0,690 kg par mètre cube pour le CH_4 , aux conditions de référence;

0,001 = Facteur de conversion des kilogrammes en tonnes métriques;

 $i = CO_2$ ou CH_4 .