$$C_{CO_2}(t) = k_{CO_2} \int_{-\infty}^{t} E_{CO_2}(t') \cdot \left[f_{CO_2,0} + \sum_{S=1}^{n} f_{CO_2,S} \cdot e^{\left(-\frac{t-t'}{\tau_{CO_2,S}}\right)} \right]_{t} dt'$$ Where: C_{CO2} (t) = Atmospheric mass loading of a CO_2 -type GHG or residual fraction of a type x GHG flow, in metric tonne CO_2 equivalent, as a function of period t; τ = concentration; k_{CO2} = 0.47 ppmv/GtC, to be added only to adjust the result; E_{CO2} = Emissions of CO₂ in metric tonnes; $\tau_{CO2,S}$ = Exponential atmospheric degradation time of the Sth fraction of the additional concentration (τ 1 = 394.4; τ 2 = 36.54; τ 3 = 4.304); $f_{CO2,0}$ = First fraction (0.2173); $f_{CO2,S}$ = Respective fractions (0.224; 0.2824; 0.2763).