$$GHG_{i} = \sum_{j=1}^{n} \left[\sum_{m=1}^{z} \left(F_{G,j} \times t_{j} \right)_{m} \times \left(1 - FG_{j} \right) \right] \times MF_{i} \times \left[\frac{T_{SC} \times P_{rc}}{T_{rc} \times P_{SC}} \right] \times \rho_{i} \times 0.001$$

Where:

 $GHG_i = Annual$ emissions of greenhouse gas i attributable to reciprocating compressor venting, in metric tons;

n = Total number of reciprocating compressors;

i = Reciprocating compressor;

z = Number of operating modes of reciprocating compressor;

m = Operating mode of reciprocating compressor;

 $F_{G,j}$ = Gas flow from the venting of reciprocating compressor j in operating mode m, determined in accordance with paragraph 1 of QC.33.4.15, in cubic metres per hour;

 t_j = Annual operating time of reciprocating compressor j in operating mode m, determined in accordance with QC.33.4.15, in hours:

 FG_j = Portion of gas from the vent of reciprocating compressor j that is recovered using a vapour recovery system, determined in accordance with paragraph 5 of QC.33.4.15, expressed as a percentage;

 MF_i = Molar fraction of greenhouse gas i in the gas from the reciprocating compressor venting, determined in accordance with paragraph 3 of OC.33.4;

 T_{SC} = Temperature at standard conditions of 293.15 kelvin;

 T_{rc} = Temperature at the reciprocating compressor vent, in kelvin;

 P_{rc} = Pressure at the reciprocating compressor vent, in kilopascals;

P_{SC} = Pressure at standard conditions of 101.325 kPa;

 ρ_i = Density of greenhouse gas *i* that is 1.830 kg per cubic metre for CO₂ and 0.668 kg per cubic metre for CH₄ at standard conditions;

0.001 = Conversion factor, kilograms to metric tons;

 $i = CO_2$ or CH_4 ;