Figure 1
Delimitation of a drainage basin at the crossing point of a watercourse


Figure 2
Calculation of the average slope of the drainage basin ( $\mathrm{S}_{\mathrm{b}}$ )

$S_{0}=\frac{\left(N_{n}+N\right) \times E q_{c}}{(L+L)}$
$S_{2}$ : Average slope of the drainage basin
$\mathrm{N}_{2}$, Number of times the horizontal and vertical lines cross a contour line
Eq: : Equidistance of contour lines ( $m$ )
$\mathrm{L}_{\mathrm{n}}$ : Length of horizontal and vertical lines (m)
$S_{0}=(180+111) \times 10=0,089$ or $8,9 \%$ (16 460 + 16 410)

Figure 3
Identification of surface deposits in the drainage basint


Figure 4
Determination of the watercourse's length $\left(\mathrm{L}_{\mathbf{c}}\right)$


Figure 5
Calculation of the «85-10» slope of the watercourse $\left(S_{c}\right)$


Figure 6
Isohyet of the average total rainfall (mm) of a 1-hour duration


Figure 7
Isohyet of the standard deviation for total rainfall (mm) of a 1-hour duration



Source : Manuel de conception des ponceaux, MTQ

